Virginia Tech® home

Methods Development

Methods development

Many different physical models, numerical techniques, turbulence models,  etc. make up the solution of  the governing transport processes. The research focuses on developing, implementing, and testing  different methods and models.

  • Peter Windes
  • Vivek Srinivasan (MS 2019)
  • Husam El-Ghanney (PhD 2018)
  • Steven Paul (MS 2018)
  • Keyur Joshi (Post-doc, 2014-16)
  • Kuahai Yu visiting scholar 2015-16)
  • Sukhjinder Singh (PhD 2014)
  • Deepu Dilip (MS 2014)
  • Nagendra Krishnamurthy (PhD 2014)
  • Kamal Viswanath (PhD 2013)
  • Naresh Selvarasu (PhD 2013)
  • Surya Deb (PhD 2013)
  • Kevin Song (MS 2012)
  • Sunil Patil (PhD 2011)
  • Pradeep Gopalakrishnan (PhD 2008)
  • Shi-Ming Li (PhD 2007)
  • Guangchu Hu (Post-doc, 2002-03)

Publications


Journal


  1. Nagendra, K. and Tafti, D. K., “A Sub-pore Model for Multi-Scale Reaction-Diffusion Problems in Porous Media,” J. Heat Mass Transfer 84, May 2015, pp. 463-474. (doi:10.1016/j.ijheatmasstransfer.2014.12.034)
  2. Nagendra, K., Tafti, D. K., and Viswanath, K., A new approach for conjugate heat transfer problems using immersed boundary method for curvilinear grid based solvers, J. Comp. Physics Vol. 267, 15 June 2014, pp. 225-246. (doi: 10.1016/j.jcp.2014.02.045)
  3. Tafti, D. K., Large-Eddy Simulation for Turbulent Heat Transfer, J. Thermal Science Engineering Applications, Special Issue: 75th Anniversary Celebration of the Heat Transfer Division, Vol. 5, June 2013, pp. 021001-(1-13). (doi: 10.1115/1.4023955)
  4. Nagendra, K. and Tafti, D. K., Flows Through Reconstructed Porous Media Using Immersed Boundary Methods, ASME J. Fluids Engineering 136(4), April 01, 2014, 040908 (doi:10.1115/1.4026102)
  5. Patil, S. and Tafti, D. K., Large-Eddy Simulations of Flow and Convective Heat Transfer in a Gas Turbine Can Combustor with Synthetic Inlet Turbulence, ASME Journal of Engineering for Gas Turbines and Power 134, pp. 071503(1-9), July 2012.
  6. Patil S. and Tafti, D. K., A two-layer wall model for large-eddy simulations of flow over rough surfaces, AIAA J. 50(2), p. 454, 2012.
  7. Patil S. and Tafti, D. K., Wall modeled large eddy simulation of complex high Reynolds number flows with synthetic inlet turbulence, Int. J. Heat Fluid Flow 33(1), pp. 9-21, Feb. 2012.
  8. Gopalakrishnan, P. and Tafti, D. K., A Parallel Boundary Fitted Dynamic Mesh Solver for Applications to Flapping Flight, Computers and Fluids, 38(8), pp. 1592-1607, 2009.
  9. Li S.-M. and Tafti D.K., Near-Critical CO2 Liquid-Vapor Flow in a Sub-Microchannel. Part 1: Mean-Field Free-Energy D2Q9 Lattice Boltzmann method, J. Multiphase Flow 35(8), pp. 725-737, 2009.
  10. Sewall, E.A., Tafti, D.K., An Unsteady Variable Property Algorithm for Flows with Large Temperature Variations, Computers and Fluids 37, pp. 51-63, 2008.
  11. Li, S-M., Tafti, D. K., A Mean Field Pressure Formulation for Liquid-Vapor Flows, ASME J. Fluids Engineering 129(7), pp. 894-901, 2007.
  12. D. L. Ma, D. K. Tafti, and R. D. Braatz. High resolution simulation of multidimensional crystallization. Special Issue in Honor of William R. Schowalter, Ind. Eng. Chem. Res., 41, pp. 6217-6223, 2002.
  13. D. L. Ma, D. Tafti, and R. D. Braatz. Compartmental modeling of multidimensional crystallization. Int. J. of Modern Physics B, 16, pp. 383-390, 2002.
  14. Tafti, D. K., Comparison of Some High-Order Formulations With a Second-Order Central-Difference Scheme For Time Integration Of The Incompressible Navier-Stokes Equations, Computers and Fluids, vol. 25, No. 7, pp. 647-665, 1996.
  15. Najjar, F. and Tafti D. K., Study of Discrete Test Filters and Finite Difference Approximations for the Dynamic Subgrid-Scale Stress Model, Physics of Fluids 8(4), pp. 1076-1088, April 1996.
  16. Tafti, D. K., Alternate Formulations for the Pressure Equation Laplacian on a Collocated Grid for Solving the Unsteady Incompressible Navier-Stokes Equations, J. of Comp. Physics 116, pp. 143-153, January 1995.
  17. Tafti D. K., Zhang L.W., and Wang, G. A Time-Dependent Calculation Procedure for Fully Developed and Developing Flow and Heat Transfer in Louvered Fin Geometries, Num. Heat Transfer A, 35(3), pp.225-249, 1999.

Conference


  1. Yu, K. Tafti, D.K., Yang, X. and Xin S., “Heat transfer during impact of elastoplastic and cohesive particles,” Paper No. GT2019-91087, Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference & Exposition, June 17-21, 2019, Phoenix, Arizona, USA.
  2. He Long, Joshi, K. and Tafti, D. K., “Study of Fluid Structure Interaction using Sharp Interface Immersed Boundary Method,” FEDSM2016-7861, Proceedings of the ASME 2016 Fluids Engineering Division Summer Meeting, July 10-14, 2016, Washington, DC, USA.
  3. Amritkar, A., Tafti, D. K., CFD computations using preconditioned Krylov solver on GPUs, Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting and 11th International Conference on Nanochannels, Microchannels, and Minichannels, Paper No. FEDSM2014-21669, August 3-7, 2014, Chicago, Illinois, USA.
  4. Dilip, D. and Tafti, D. K., Wall modeled Large Eddy simulation of flow over a wall- mounted hump, Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting and 11th International Conference on Nanochannels, Microchannels, and Minichannels, Paper No. FEDSM2014-21517, August 3-7, 2014, Chicago, Illinois, USA.
  5. Nagendra and Tafti, D. K., Flows Through Reconstructed Porous Media Using Immersed Boundary Methods, ASME Summer Heat Transfer Conference, Puerto Rico, July 8-12, 2012.
  6. Patil, S. and Tafti D. K., Wall Modeled Large Eddy Simulation of Flow over a Backward Facing Step with Synthetic Inlet Turbulence, AIAA-2011-0747, 49th Aerospace Sciences Meeting, Orlando Florida, Jan. 4-7, 2011.
  7. Gopalakrishnan, P. and Tafti, D. K., A Parallel Multiblock Boundary Fitted Dynamic Mesh Solver for Simulating Flows with Complex Boundary Movement, AIAA 38th Fluid Dynamic Conference, Seattle, Washington., June 2008.
  8. S-M.. Li, D. K. Tafti, An Improved Mean-Field Free-Energy Lattice Boltzmann Method for Liquid-Vapor Interfaces, FEDSM2006-98021, ASME Joint US-European Fluids Engineering Summer Meeting, July 17-20, 2006, Miami, Florida, USA.
  9. S-M. Li, D. K. Tafti, Contact line dynamics in liquid-vapor flows using Lattice Boltzmann Method, FEDSM2006-98022, ASME Joint US-European Fluids Engineering Summer Meeting, July 17-20, 2006, Miami, Florida, USA.
  10. Wasistho, W., Haselbacher, A., Najjar, F., Tafti D., Balachandar, S., Moser R. D., Direct and Large Eddy Simulations of Compressible Wall-Injection Flows in Laminar, Transitional, and Turbulent Regimes, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2002-4344, July 7-10, Indianiapolis, IN, 2002.
  11. Tafti D. K., GenIDLEST - A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows, Proceedings of the ASME Fluids Engineering Division, FED -Vol. 256, pp. 347-356, ASME-IMECE, Nov. 2001, New York.
  12. Ma, D. L., Togkalidou, T., Fujiwara, M., Tafti D. K. and Braatz, R. D., Modeling and simulation of multidimensional Crystallization, AIChE Annual Meeting, 2000.
  13. Ma, D. L., Togkalidou, T., Fujiwara, M., Tafti D. K. and Braatz, R. D., Identification of Pharmaceutical Crystallization Processes, IFAC World Congress on Automatic Control, Elsevier Science Ltd., Oxford, UK, 2002, paper T-Fr-A11 1.
  14. Allavilli, P.V.S., Tafti D. K. and Najjar, F., The Development of an Advanced Solid-Rocket Flow Simulation Program ROCFLO, 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 2000.
  15. Moser R. D., Norman M. L., Balachandar S. and Tafti D, Simulating Flows in Solid Rocket Motors,” AIAA 99-3648, by invitation at the 30th AIAA Fluid Dynamics Conference, Norfolk VA, June 28-31, 1999.
  16. Najjar F. and Tafti D. K., Comparison of Finite Difference Discretizations for High Reynolds Number Turbulent Channel Flow with the Dynamic Subgrid-Scale Stress Model, Advances in DNS/LES, Proceedings of the First AFOSR International Conference on DNS/LES, pp. 539-546, Louisiana Tech University, Aug. 4-8, 1997.
  17. Najjar, F. and Tafti D.K., Evaluation of the Dynamic Subgrid-Scale Stress Model in Finite-Difference LES: Effects of Grid Resolution and Inhomogeneous Test Filtering, FED-Vol. 242, pp. 229-236,ASME-IMECE, Atlanta, GA, Nov. 1996.
  18. Tafti D. K., A Study of Krylov Methods for the Solution of the Pressure-Poisson Equation on the CM-5, FED-Vol.215, pp. 1-8,ASME /JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, Hilton Head, South Carolina, August 13-18, 1995.
  19. Tafti, D. K., High-Order Finite Difference Formulations for the Incompressible Navier-Stokes Equations on the CM-5, proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing, editors: Bailey et al., pp.155-160, Feb. 1995.
  20. Tafti, D. K., Higher Order Finite-Difference Formulations for the Incompressible Navier-Stokes Equations, 11th AIAA Computational Fluid Dynamics Conference , A Collection of Technical Papers Part 2, pp. 1065, July 1993.